pytorch / 2 / generated / torch.nn.grucell.html

GRUCell

class torch.nn.GRUCell(input_size, hidden_size, bias=True, device=None, dtype=None) [source]

A gated recurrent unit (GRU) cell

r = σ ( W i r x + b i r + W h r h + b h r ) z = σ ( W i z x + b i z + W h z h + b h z ) n = tanh ( W i n x + b i n + r ( W h n h + b h n ) ) h = ( 1 z ) n + z h \begin{array}{ll} r = \sigma(W_{ir} x + b_{ir} + W_{hr} h + b_{hr}) \\ z = \sigma(W_{iz} x + b_{iz} + W_{hz} h + b_{hz}) \\ n = \tanh(W_{in} x + b_{in} + r * (W_{hn} h + b_{hn})) \\ h' = (1 - z) * n + z * h \end{array}

where σ \sigma is the sigmoid function, and * is the Hadamard product.

Parameters
  • input_size (int) – The number of expected features in the input x
  • hidden_size (int) – The number of features in the hidden state h
  • bias (bool) – If False, then the layer does not use bias weights b_ih and b_hh. Default: True
Inputs: input, hidden
  • input : tensor containing input features
  • hidden : tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.
Outputs: h’
  • h’ : tensor containing the next hidden state for each element in the batch
Shape:
  • input: ( N , H i n ) (N, H_{in}) or ( H i n ) (H_{in}) tensor containing input features where H i n H_{in} = input_size.
  • hidden: ( N , H o u t ) (N, H_{out}) or ( H o u t ) (H_{out}) tensor containing the initial hidden state where H o u t H_{out} = hidden_size. Defaults to zero if not provided.
  • output: ( N , H o u t ) (N, H_{out}) or ( H o u t ) (H_{out}) tensor containing the next hidden state.
Variables
  • weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape (3*hidden_size, input_size)
  • weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape (3*hidden_size, hidden_size)
  • bias_ih – the learnable input-hidden bias, of shape (3*hidden_size)
  • bias_hh – the learnable hidden-hidden bias, of shape (3*hidden_size)

Note

All the weights and biases are initialized from U ( k , k ) \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = 1 hidden_size k = \frac{1}{\text{hidden\_size}}

On certain ROCm devices, when using float16 inputs this module will use different precision for backward.

Examples:

>>> rnn = nn.GRUCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
...     hx = rnn(input[i], hx)
...     output.append(hx)

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.GRUCell.html