On this page
LazyConv2d
class torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)[source]-
A
torch.nn.Conv2dmodule with lazy initialization of thein_channelsargument of theConv2dthat is inferred from theinput.size(1). The attributes that will be lazily initialized areweightandbias.Check the
torch.nn.modules.lazy.LazyModuleMixinfor further documentation on lazy modules and their limitations.- Parameters
-
- out_channels (int) – Number of channels produced by the convolution
- kernel_size (int or tuple) – Size of the convolving kernel
- stride (int or tuple, optional) – Stride of the convolution. Default: 1
- padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
- padding_mode (str, optional) –
'zeros','reflect','replicate'or'circular'. Default:'zeros' - dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
- groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional) – If
True, adds a learnable bias to the output. Default:True
See also
cls_to_become-
alias of
Conv2d
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.LazyConv2d.html