On this page
LazyLinear
class torch.nn.LazyLinear(out_features, bias=True, device=None, dtype=None)[source]-
A
torch.nn.Linearmodule wherein_featuresis inferred.In this module, the
weightandbiasare oftorch.nn.UninitializedParameterclass. They will be initialized after the first call toforwardis done and the module will become a regulartorch.nn.Linearmodule. Thein_featuresargument of theLinearis inferred from theinput.shape[-1].Check the
torch.nn.modules.lazy.LazyModuleMixinfor further documentation on lazy modules and their limitations.- Parameters
-
- out_features (int) – size of each output sample
- bias (UninitializedParameter) – If set to
False, the layer will not learn an additive bias. Default:True
- Variables
-
- weight (torch.nn.parameter.UninitializedParameter) – the learnable weights of the module of shape . The values are initialized from , where
- bias (torch.nn.parameter.UninitializedParameter) – the learnable bias of the module of shape
. If
biasisTrue, the values are initialized from where
cls_to_become-
alias of
Linear
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.LazyLinear.html