pytorch / 2 / generated / torch.ao.nn.quantized.functional.avg_pool3d.html

avg_pool3d

class torch.ao.nn.quantized.functional.avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) [source]

Applies 3D average-pooling operation in k D t i m e s k H × k W kD \ times kH \times kW regions by step size s D × s H × s W sD \times sH \times sW steps. The number of output features is equal to the number of input planes.

Note

The input quantization parameters propagate to the output.

Parameters
  • input – quantized input tensor ( minibatch , in_channels , i H , i W ) (\text{minibatch} , \text{in\_channels} , iH , iW)
  • kernel_size – size of the pooling region. Can be a single number or a tuple (kD, kH, kW)
  • stride – stride of the pooling operation. Can be a single number or a tuple (sD, sH, sW). Default: kernel_size
  • padding – implicit zero paddings on both sides of the input. Can be a single number or a tuple (padD, padH, padW). Default: 0
  • ceil_mode – when True, will use ceil instead of floor in the formula to compute the output shape. Default: False
  • count_include_pad – when True, will include the zero-padding in the averaging calculation. Default: True
  • divisor_override – if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.ao.nn.quantized.functional.avg_pool3d.html