pytorch / 2 / generated / torch.nn.adaptivemaxpool3d.html

AdaptiveMaxPool3d

class torch.nn.AdaptiveMaxPool3d(output_size, return_indices=False) [source]

Applies a 3D adaptive max pooling over an input signal composed of several input planes.

The output is of size D o u t × H o u t × W o u t D_{out} \times H_{out} \times W_{out} , for any input size. The number of output features is equal to the number of input planes.

Parameters
  • output_size (Union[int, None, Tuple[Optional[int], Optional[int], Optional[int]]]) – the target output size of the image of the form D o u t × H o u t × W o u t D_{out} \times H_{out} \times W_{out} . Can be a tuple ( D o u t , H o u t , W o u t ) (D_{out}, H_{out}, W_{out}) or a single D o u t D_{out} for a cube D o u t × D o u t × D o u t D_{out} \times D_{out} \times D_{out} . D o u t D_{out} , H o u t H_{out} and W o u t W_{out} can be either a int, or None which means the size will be the same as that of the input.
  • return_indices (bool) – if True, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool3d. Default: False
Shape:
  • Input: ( N , C , D i n , H i n , W i n ) (N, C, D_{in}, H_{in}, W_{in}) or ( C , D i n , H i n , W i n ) (C, D_{in}, H_{in}, W_{in}) .
  • Output: ( N , C , D o u t , H o u t , W o u t ) (N, C, D_{out}, H_{out}, W_{out}) or ( C , D o u t , H o u t , W o u t ) (C, D_{out}, H_{out}, W_{out}) , where ( D o u t , H o u t , W o u t ) = output_size (D_{out}, H_{out}, W_{out})=\text{output\_size} .

Examples

>>> # target output size of 5x7x9
>>> m = nn.AdaptiveMaxPool3d((5, 7, 9))
>>> input = torch.randn(1, 64, 8, 9, 10)
>>> output = m(input)
>>> # target output size of 7x7x7 (cube)
>>> m = nn.AdaptiveMaxPool3d(7)
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
>>> # target output size of 7x9x8
>>> m = nn.AdaptiveMaxPool3d((7, None, None))
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.AdaptiveMaxPool3d.html