On this page
torch.rand
torch.rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor
-
Returns a tensor filled with random numbers from a uniform distribution on the interval
The shape of the tensor is defined by the variable argument
size
.- Parameters
-
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
-
- generator (
torch.Generator
, optional) – a pseudorandom number generator for sampling - out (Tensor, optional) – the output tensor.
- dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). - layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
. - device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. - requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
. - pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.
- generator (
Example:
>>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]])
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.rand.html