On this page
torch.Tensor.to_sparse_csc
Tensor.to_sparse_csc() → Tensor-
Convert a tensor to compressed column storage (CSC) format. Except for strided tensors, only works with 2D tensors. If the
selfis strided, then the number of dense dimensions could be specified, and a hybrid CSC tensor will be created, withdense_dimdense dimensions andself.dim() - 2 - dense_dimbatch dimension.- Parameters
-
dense_dim (int, optional) – Number of dense dimensions of the resulting CSC tensor. This argument should be used only if
selfis a strided tensor, and must be a value between 0 and dimension ofselftensor minus two.
Example:
>>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csc() >>> sparse._nnz() 25 >>> dense = torch.zeros(3, 3, 1, 1) >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 >>> dense.to_sparse_csc(dense_dim=2) tensor(ccol_indices=tensor([0, 1, 2, 3]), row_indices=tensor([0, 2, 1]), values=tensor([[[1.]], [[1.]], [[1.]]]), size=(3, 3, 1, 1), nnz=3, layout=torch.sparse_csc)
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.Tensor.to_sparse_csc.html