On this page
sklearn.cross_decomposition.PLSSVD
- classsklearn.cross_decomposition.PLSSVD(n_components=2, *, scale=True, copy=True)[source]
-
Partial Least Square SVD.
This transformer simply performs a SVD on the cross-covariance matrix
X'Y. It is able to project both the training dataXand the targetsY. The training dataXis projected on the left singular vectors, while the targets are projected on the right singular vectors.Read more in the User Guide.
New in version 0.8.
- Parameters:
-
- n_componentsint, default=2
-
The number of components to keep. Should be in
[1, min(n_samples, n_features, n_targets)]. - scalebool, default=True
-
Whether to scale
XandY. - copybool, default=True
-
Whether to copy
XandYin fit before applying centering, and potentially scaling. IfFalse, these operations will be done inplace, modifying both arrays.
- Attributes:
-
- x_weights_ndarray of shape (n_features, n_components)
-
The left singular vectors of the SVD of the cross-covariance matrix. Used to project
Xintransform. - y_weights_ndarray of (n_targets, n_components)
-
The right singular vectors of the SVD of the cross-covariance matrix. Used to project
Xintransform. - n_features_in_int
-
Number of features seen during fit.
- feature_names_in_ndarray of shape (
n_features_in_,) -
Names of features seen during fit. Defined only when
Xhas feature names that are all strings.New in version 1.0.
See also
-
PLSCanonical -
Partial Least Squares transformer and regressor.
-
CCA -
Canonical Correlation Analysis.
Examples
>>> import numpy as np >>> from sklearn.cross_decomposition import PLSSVD >>> X = np.array([[0., 0., 1.], ... [1., 0., 0.], ... [2., 2., 2.], ... [2., 5., 4.]]) >>> Y = np.array([[0.1, -0.2], ... [0.9, 1.1], ... [6.2, 5.9], ... [11.9, 12.3]]) >>> pls = PLSSVD(n_components=2).fit(X, Y) >>> X_c, Y_c = pls.transform(X, Y) >>> X_c.shape, Y_c.shape ((4, 2), (4, 2))Methods
fit(X, Y)Fit model to data.
fit_transform(X[, y])Learn and apply the dimensionality reduction.
get_feature_names_out([input_features])Get output feature names for transformation.
get_params([deep])Get parameters for this estimator.
set_params(**params)Set the parameters of this estimator.
transform(X[, Y])Apply the dimensionality reduction.
- fit(X, Y)[source]
-
Fit model to data.
- Parameters:
-
- Xarray-like of shape (n_samples, n_features)
-
Training samples.
- Yarray-like of shape (n_samples,) or (n_samples, n_targets)
-
Targets.
- Returns:
-
- selfobject
-
Fitted estimator.
- fit_transform(X, y=None)[source]
-
Learn and apply the dimensionality reduction.
- Parameters:
-
- Xarray-like of shape (n_samples, n_features)
-
Training samples.
- yarray-like of shape (n_samples,) or (n_samples, n_targets), default=None
-
Targets.
- Returns:
-
- outarray-like or tuple of array-like
-
The transformed data
X_transformedifY is not None,(X_transformed, Y_transformed)otherwise.
- get_feature_names_out(input_features=None)[source]
-
Get output feature names for transformation.
- Parameters:
-
- input_featuresarray-like of str or None, default=None
-
Only used to validate feature names with the names seen in
fit.
- Returns:
-
- feature_names_outndarray of str objects
-
Transformed feature names.
- get_params(deep=True)[source]
-
Get parameters for this estimator.
- Parameters:
-
- deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
-
- paramsdict
-
Parameter names mapped to their values.
- set_params(**params)[source]
-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
-
- **paramsdict
-
Estimator parameters.
- Returns:
-
- selfestimator instance
-
Estimator instance.
- transform(X, Y=None)[source]
-
Apply the dimensionality reduction.
- Parameters:
-
- Xarray-like of shape (n_samples, n_features)
-
Samples to be transformed.
- Yarray-like of shape (n_samples,) or (n_samples, n_targets), default=None
-
Targets.
- Returns:
-
- x_scoresarray-like or tuple of array-like
-
The transformed data
X_transformedifY is not None,(X_transformed, Y_transformed)otherwise.
© 2007–2022 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/1.1/modules/generated/sklearn.cross_decomposition.PLSSVD.html