On this page
sklearn.decomposition.sparse_encode
- sklearn.decomposition.sparse_encode(X, dictionary, *, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=None, check_input=True, verbose=0, positive=False)[source]
-
Sparse coding.
Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array
codesuch that:X ~= code * dictionaryRead more in the User Guide.
- Parameters:
-
- Xndarray of shape (n_samples, n_features)
-
Data matrix.
- dictionaryndarray of shape (n_components, n_features)
-
The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output.
- gramndarray of shape (n_components, n_components), default=None
-
Precomputed Gram matrix,
dictionary * dictionary'. - covndarray of shape (n_components, n_samples), default=None
-
Precomputed covariance,
dictionary' * X. - algorithm{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’lasso_lars’
-
The algorithm used:
'lars': uses the least angle regression method (linear_model.lars_path);'lasso_lars': uses Lars to compute the Lasso solution;'lasso_cd': uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse;'omp': uses orthogonal matching pursuit to estimate the sparse solution;'threshold': squashes to zero all coefficients less than regularization from the projectiondictionary * data'.
- n_nonzero_coefsint, default=None
-
Number of nonzero coefficients to target in each column of the solution. This is only used by
algorithm='lars'andalgorithm='omp'and is overridden byalphain theompcase. IfNone, thenn_nonzero_coefs=int(n_features / 10). - alphafloat, default=None
-
If
algorithm='lasso_lars'oralgorithm='lasso_cd',alphais the penalty applied to the L1 norm. Ifalgorithm='threshold',alphais the absolute value of the threshold below which coefficients will be squashed to zero. Ifalgorithm='omp',alphais the tolerance parameter: the value of the reconstruction error targeted. In this case, it overridesn_nonzero_coefs. IfNone, default to 1. - copy_covbool, default=True
-
Whether to copy the precomputed covariance matrix; if
False, it may be overwritten. - initndarray of shape (n_samples, n_components), default=None
-
Initialization value of the sparse codes. Only used if
algorithm='lasso_cd'. - max_iterint, default=1000
-
Maximum number of iterations to perform if
algorithm='lasso_cd'or'lasso_lars'. - n_jobsint, default=None
-
Number of parallel jobs to run.
Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details. - check_inputbool, default=True
-
If
False, the input arrays X and dictionary will not be checked. - verboseint, default=0
-
Controls the verbosity; the higher, the more messages.
- positivebool, default=False
-
Whether to enforce positivity when finding the encoding.
New in version 0.20.
- Returns:
-
- codendarray of shape (n_samples, n_components)
-
The sparse codes.
See also
-
sklearn.linear_model.lars_path -
Compute Least Angle Regression or Lasso path using LARS algorithm.
-
sklearn.linear_model.orthogonal_mp -
Solves Orthogonal Matching Pursuit problems.
-
sklearn.linear_model.Lasso -
Train Linear Model with L1 prior as regularizer.
-
SparseCoder -
Find a sparse representation of data from a fixed precomputed dictionary.
© 2007–2022 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/1.1/modules/generated/sklearn.decomposition.sparse_encode.html