On this page
Statsmodels
statsmodels
is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. An extensive list of result statistics are available for each estimator. The results are tested against existing statistical packages to ensure that they are correct. The package is released under the open source Modified BSD (3-clause) license. The online documentation is hosted at statsmodels.org.
Minimal Examples
Since version 0.5.0
of statsmodels
, you can use R-style formulas together with pandas
data frames to fit your models. Here is a simple example using ordinary least squares:
In [1]: import numpy as np
In [2]: import statsmodels.api as sm
In [3]: import statsmodels.formula.api as smf
# Load data
In [4]: dat = sm.datasets.get_rdataset("Guerry", "HistData").data
# Fit regression model (using the natural log of one of the regressors)
In [5]: results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit()
# Inspect the results
In [6]: print(results.summary())
OLS Regression Results
==============================================================================
Dep. Variable: Lottery R-squared: 0.348
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 22.20
Date: Mon, 14 May 2018 Prob (F-statistic): 1.90e-08
Time: 21:48:09 Log-Likelihood: -379.82
No. Observations: 86 AIC: 765.6
Df Residuals: 83 BIC: 773.0
Df Model: 2
Covariance Type: nonrobust
===================================================================================
coef std err t P>|t| [0.025 0.975]
-----------------------------------------------------------------------------------
Intercept 246.4341 35.233 6.995 0.000 176.358 316.510
Literacy -0.4889 0.128 -3.832 0.000 -0.743 -0.235
np.log(Pop1831) -31.3114 5.977 -5.239 0.000 -43.199 -19.424
==============================================================================
Omnibus: 3.713 Durbin-Watson: 2.019
Prob(Omnibus): 0.156 Jarque-Bera (JB): 3.394
Skew: -0.487 Prob(JB): 0.183
Kurtosis: 3.003 Cond. No. 702.
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
You can also use numpy
arrays instead of formulas:
In [7]: import numpy as np
In [8]: import statsmodels.api as sm
# Generate artificial data (2 regressors + constant)
In [9]: nobs = 100
In [10]: X = np.random.random((nobs, 2))
In [11]: X = sm.add_constant(X)
In [12]: beta = [1, .1, .5]
In [13]: e = np.random.random(nobs)
In [14]: y = np.dot(X, beta) + e
# Fit regression model
In [15]: results = sm.OLS(y, X).fit()
# Inspect the results
In [16]: print(results.summary())
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.183
Model: OLS Adj. R-squared: 0.166
Method: Least Squares F-statistic: 10.83
Date: Mon, 14 May 2018 Prob (F-statistic): 5.68e-05
Time: 21:48:10 Log-Likelihood: -23.528
No. Observations: 100 AIC: 53.06
Df Residuals: 97 BIC: 60.87
Df Model: 2
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 1.4355 0.081 17.716 0.000 1.275 1.596
x1 0.2664 0.101 2.650 0.009 0.067 0.466
x2 0.4224 0.116 3.635 0.000 0.192 0.653
==============================================================================
Omnibus: 75.567 Durbin-Watson: 2.054
Prob(Omnibus): 0.000 Jarque-Bera (JB): 7.752
Skew: 0.065 Prob(JB): 0.0207
Kurtosis: 1.642 Cond. No. 5.32
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
Have a look at dir(results)
to see available results. Attributes are described in results.__doc__
and results methods have their own docstrings.
Citation
When using statsmodels in scientific publication, please consider using the following citation:
Seabold, Skipper, and Josef Perktold. “Statsmodels: Econometric and statistical modeling with python.” Proceedings of the 9th Python in Science Conference. 2010.Bibtex entry:
@inproceedings{seabold2010statsmodels,
title={Statsmodels: Econometric and statistical modeling with python},
author={Seabold, Skipper and Perktold, Josef},
booktitle={9th Python in Science Conference},
year={2010},
}
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/index.html