On this page
statsmodels.tsa.holtwinters.HoltWintersResults
class statsmodels.tsa.holtwinters.HoltWintersResults(model, params, **kwds)[source]-
Holt Winter’s Exponential Smoothing Results
Parameters: - model (ExponentialSmoothing instance) – The fitted model instance
- params (dictionary) – All the parameters for the Exponential Smoothing model.
specification-
dictionary – Dictionary including all attributes from the VARMAX model instance.
params-
dictionary – All the parameters for the Exponential Smoothing model.
fittedfcast-
array – An array of both the fitted values and forecast values.
fittedvalues-
array – An array of the fitted values. Fitted by the Exponential Smoothing model.
fcast-
array – An array of the forecast values forecast by the Exponential Smoothing model.
sse-
float – The sum of squared errors
level-
array – An array of the levels values that make up the fitted values.
slope-
array – An array of the slope values that make up the fitted values.
season-
array – An array of the seaonal values that make up the fitted values.
aic-
float – The Akaike information criterion.
bic-
float – The Bayesian information criterion.
aicc-
float – AIC with a correction for finite sample sizes.
resid-
array – An array of the residuals of the fittedvalues and actual values.
k-
int – the k parameter used to remove the bias in AIC, BIC etc.
Methods
forecast([steps])Out-of-sample forecasts initialize(model, params, **kwd)predict([start, end])In-sample prediction and out-of-sample forecasting summary()
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.tsa.holtwinters.HoltWintersResults.html