On this page
tf.contrib.data.read_batch_features
Reads batches of Examples. (deprecated)
tf.contrib.data.read_batch_features(
file_pattern, batch_size, features, reader=tf.data.TFRecordDataset,
reader_args=None, randomize_input=True, num_epochs=None, capacity=10000
)
Example:
serialized_examples = [
features {
feature { key: "age" value { int64_list { value: [ 0 ] } } }
feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } }
},
features {
feature { key: "age" value { int64_list { value: [] } } }
feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
feature { key: "kws" value { bytes_list { value: [ "sports" ] } } }
}
]
We can use arguments:
features: {
"age": FixedLenFeature([], dtype=tf.int64, default_value=-1),
"gender": FixedLenFeature([], dtype=tf.string),
"kws": VarLenFeature(dtype=tf.string),
}
And the expected output is:
{
"age": [[0], [-1]],
"gender": [["f"], ["f"]],
"kws": SparseTensor(
indices=[[0, 0], [0, 1], [1, 0]],
values=["code", "art", "sports"]
dense_shape=[2, 2]),
}
Args | |
---|---|
file_pattern |
List of files or patterns of file paths containing Example records. See tf.io.gfile.glob for pattern rules. |
batch_size |
An int representing the number of records to combine in a single batch. |
features |
A dict mapping feature keys to FixedLenFeature or VarLenFeature values. See tf.io.parse_example . |
reader |
A function or class that can be called with a filenames tensor and (optional) reader_args and returns a Dataset of Example tensors. Defaults to tf.data.TFRecordDataset . |
reader_args |
Additional arguments to pass to the reader class. |
randomize_input |
Whether the input should be randomized. |
num_epochs |
Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. |
capacity |
Buffer size of the ShuffleDataset. A large capacity ensures better shuffling but would increase memory usage and startup time. |
Returns | |
---|---|
A dict from keys in features to Tensor or SparseTensor objects. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/data/read_batch_features