On this page
tf.tpu.experimental.embedding.SGD
Optimization parameters for stochastic gradient descent for TPU embeddings.
tf.tpu.experimental.embedding.SGD(
learning_rate=0.01, clip_weight_min=None, clip_weight_max=None,
weight_decay_factor=None, multiply_weight_decay_factor_by_learning_rate=None
)
Pass this to tf.tpu.experimental.embedding.TPUEmbedding
via the optimizer
argument to set the global optimizer and its parameters:
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
...
optimizer=tf.tpu.experimental.embedding.SGD(0.1))
This can also be used in a tf.tpu.experimental.embedding.TableConfig
as the optimizer parameter to set a table specific optimizer. This will override the optimizer and parameters for global embedding optimizer defined above:
table_one = tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=...,
dim=...,
optimizer=tf.tpu.experimental.embedding.SGD(0.2))
table_two = tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=...,
dim=...)
feature_config = (
tf.tpu.experimental.embedding.FeatureConfig(
table=table_one),
tf.tpu.experimental.embedding.FeatureConfig(
table=table_two))
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
feature_config=feature_config,
batch_size=...
optimizer=tf.tpu.experimental.embedding.SGD(0.1))
In the above example, the first feature will be looked up in a table that has a learning rate of 0.2 while the second feature will be looked up in a table that has a learning rate of 0.1.
See 'tensorflow/core/protobuf/tpu/optimization_parameters.proto' for a complete description of these parameters and their impacts on the optimizer algorithm.
Args | |
---|---|
learning_rate |
The learning rate. It should be a floating point value or a callable taking no arguments for a dynamic learning rate. |
clip_weight_min |
the minimum value to clip by; None means -infinity. |
clip_weight_max |
the maximum value to clip by; None means +infinity. |
weight_decay_factor |
amount of weight decay to apply; None means that the weights are not decayed. Weights are decayed by multiplying the weight by this factor each step. |
multiply_weight_decay_factor_by_learning_rate |
if true, weight_decay_factor is multiplied by the current learning rate. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/tpu/experimental/embedding/SGD