On this page
tf.compat.v1.data.Iterator
Represents the state of iterating through a Dataset.
tf.compat.v1.data.Iterator(
    iterator_resource, initializer, output_types, output_shapes, output_classes
)
  | Args | |
|---|---|
iterator_resource | 
      A tf.resource scalar tf.Tensor representing the iterator. | 
     
initializer | 
      A tf.Operation that should be run to initialize this iterator. | 
     
output_types | 
      A nested structure of tf.DType objects corresponding to each component of an element of this iterator. | 
     
output_shapes | 
      A nested structure of tf.TensorShape objects corresponding to each component of an element of this iterator. | 
     
output_classes | 
      A nested structure of Python type objects corresponding to each component of an element of this iterator. | 
     
| Attributes | |
|---|---|
element_spec | 
      |
initializer | 
      A tf.Operation that should be run to initialize this iterator. | 
     
output_classes | 
      Returns the class of each component of an element of this iterator. (deprecated) 
         The expected values are   | 
     
output_shapes | 
      Returns the shape of each component of an element of this iterator. (deprecated) | 
output_types | 
      Returns the type of each component of an element of this iterator. (deprecated) | 
Methods
from_string_handle
  
  @staticmethod
from_string_handle(
    string_handle, output_types, output_shapes=None, output_classes=None
)
  Creates a new, uninitialized Iterator based on the given handle.
This method allows you to define a "feedable" iterator where you can choose between concrete iterators by feeding a value in a tf.Session.run call. In that case, string_handle would be a tf.compat.v1.placeholder, and you would feed it with the value of tf.data.Iterator.string_handle in each step.
For example, if you had two iterators that marked the current position in a training dataset and a test dataset, you could choose which to use in each step as follows:
train_iterator = tf.data.Dataset(...).make_one_shot_iterator()
train_iterator_handle = sess.run(train_iterator.string_handle())
test_iterator = tf.data.Dataset(...).make_one_shot_iterator()
test_iterator_handle = sess.run(test_iterator.string_handle())
handle = tf.compat.v1.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
    handle, train_iterator.output_types)
next_element = iterator.get_next()
loss = f(next_element)
train_loss = sess.run(loss, feed_dict={handle: train_iterator_handle})
test_loss = sess.run(loss, feed_dict={handle: test_iterator_handle})
  | Args | |
|---|---|
string_handle | 
      A scalar tf.Tensor of type tf.string that evaluates to a handle produced by the Iterator.string_handle() method. | 
     
output_types | 
      A nested structure of tf.DType objects corresponding to each component of an element of this dataset. | 
     
output_shapes | 
      (Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element of this dataset. If omitted, each component will have an unconstrainted shape. | 
     
output_classes | 
      (Optional.) A nested structure of Python type objects corresponding to each component of an element of this iterator. If omitted, each component is assumed to be of type tf.Tensor. | 
     
| Returns | |
|---|---|
An Iterator. | 
     
from_structure
  
  @staticmethod
from_structure(
    output_types, output_shapes=None, shared_name=None, output_classes=None
)
  Creates a new, uninitialized Iterator with the given structure.
This iterator-constructing method can be used to create an iterator that is reusable with many different datasets.
The returned iterator is not bound to a particular dataset, and it has no initializer. To initialize the iterator, run the operation returned by Iterator.make_initializer(dataset).
The following is an example
iterator = Iterator.from_structure(tf.int64, tf.TensorShape([]))
dataset_range = Dataset.range(10)
range_initializer = iterator.make_initializer(dataset_range)
dataset_evens = dataset_range.filter(lambda x: x % 2 == 0)
evens_initializer = iterator.make_initializer(dataset_evens)
# Define a model based on the iterator; in this example, the model_fn
# is expected to take scalar tf.int64 Tensors as input (see
# the definition of 'iterator' above).
prediction, loss = model_fn(iterator.get_next())
# Train for `num_epochs`, where for each epoch, we first iterate over
# dataset_range, and then iterate over dataset_evens.
for _ in range(num_epochs):
  # Initialize the iterator to `dataset_range`
  sess.run(range_initializer)
  while True:
    try:
      pred, loss_val = sess.run([prediction, loss])
    except tf.errors.OutOfRangeError:
      break
  # Initialize the iterator to `dataset_evens`
  sess.run(evens_initializer)
  while True:
    try:
      pred, loss_val = sess.run([prediction, loss])
    except tf.errors.OutOfRangeError:
      break
  | Args | |
|---|---|
output_types | 
      A nested structure of tf.DType objects corresponding to each component of an element of this dataset. | 
     
output_shapes | 
      (Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element of this dataset. If omitted, each component will have an unconstrainted shape. | 
     
shared_name | 
      (Optional.) If non-empty, this iterator will be shared under the given name across multiple sessions that share the same devices (e.g. when using a remote server). | 
output_classes | 
      (Optional.) A nested structure of Python type objects corresponding to each component of an element of this iterator. If omitted, each component is assumed to be of type tf.Tensor. | 
     
| Returns | |
|---|---|
An Iterator. | 
     
| Raises | |
|---|---|
TypeError | 
      If the structures of output_shapes and output_types are not the same. | 
     
get_next
  
  get_next(
    name=None
)
  Returns a nested structure of tf.Tensors representing the next element.
In graph mode, you should typically call this method once and use its result as the input to another computation. A typical loop will then call tf.Session.run on the result of that computation. The loop will terminate when the Iterator.get_next() operation raises tf.errors.OutOfRangeError. The following skeleton shows how to use this method when building a training loop:
dataset = ...  # A `tf.data.Dataset` object.
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
# Build a TensorFlow graph that does something with each element.
loss = model_function(next_element)
optimizer = ...  # A `tf.compat.v1.train.Optimizer` object.
train_op = optimizer.minimize(loss)
with tf.compat.v1.Session() as sess:
  try:
    while True:
      sess.run(train_op)
  except tf.errors.OutOfRangeError:
    pass
  Note: It is legitimate to callIterator.get_next()multiple times, e.g. when you are distributing different elements to multiple devices in a single step. However, a common pitfall arises when users callIterator.get_next()in each iteration of their training loop.Iterator.get_next()adds ops to the graph, and executing each op allocates resources (including threads); as a consequence, invoking it in every iteration of a training loop causes slowdown and eventual resource exhaustion. To guard against this outcome, we log a warning when the number of uses crosses a fixed threshold of suspiciousness.
| Args | |
|---|---|
name | 
      (Optional.) A name for the created operation. | 
| Returns | |
|---|---|
A nested structure of tf.Tensor objects. | 
     
make_initializer
  
  make_initializer(
    dataset, name=None
)
  Returns a tf.Operation that initializes this iterator on dataset.
| Args | |
|---|---|
dataset | 
      A Dataset with compatible structure to this iterator. | 
     
name | 
      (Optional.) A name for the created operation. | 
| Returns | |
|---|---|
A tf.Operation that can be run to initialize this iterator on the given dataset. | 
     
| Raises | |
|---|---|
TypeError | 
      If dataset and this iterator do not have a compatible element structure. | 
     
string_handle
  
  string_handle(
    name=None
)
  Returns a string-valued tf.Tensor that represents this iterator.
| Args | |
|---|---|
name | 
      (Optional.) A name for the created operation. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/data/Iterator