On this page
tf.compat.v1.initializers.lecun_normal
LeCun normal initializer.
tf.compat.v1.initializers.lecun_normal(
    seed=None
)
  It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given by stddev = sqrt(1 / fan_in) where fan_in is the number of input units in the weight tensor.
| Arguments | |
|---|---|
seed | 
      A Python integer. Used to seed the random generator. | 
| Returns | |
|---|---|
| An initializer. | 
References:
- Self-Normalizing Neural Networks, Klambauer et al., 2017
 
(pdf)
- Efficient Backprop, Lecun et al., 1998
 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/initializers/lecun_normal