On this page
tf.compat.v1.keras.backend.name_scope
A context manager for use when defining a Python op.
tf.compat.v1.keras.backend.name_scope(
    name, default_name=None, values=None
)
  This context manager validates that the given values are from the same graph, makes that graph the default graph, and pushes a name scope in that graph (see tf.Graph.name_scope for more details on that).
For example, to define a new Python op called my_op:
def my_op(a, b, c, name=None):
  with tf.name_scope(name, "MyOp", [a, b, c]) as scope:
    a = tf.convert_to_tensor(a, name="a")
    b = tf.convert_to_tensor(b, name="b")
    c = tf.convert_to_tensor(c, name="c")
    # Define some computation that uses `a`, `b`, and `c`.
    return foo_op(..., name=scope)
  | Args | |
|---|---|
name | 
      The name argument that is passed to the op function. | 
default_name | 
      The default name to use if the name argument is None. | 
     
values | 
      The list of Tensor arguments that are passed to the op function. | 
     
| Raises | |
|---|---|
TypeError | 
      if default_name is passed in but not a string. | 
     
| Attributes | |
|---|---|
name | 
      |
Methods
__enter__
  
  __enter__()
  __exit__
  
  __exit__(
    *exc_info
)
 © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/keras/backend/name_scope