On this page
tf.compat.v1.keras.initializers.glorot_uniform
The Glorot uniform initializer, also called Xavier uniform initializer.
Inherits From: VarianceScaling
tf.compat.v1.keras.initializers.glorot_uniform(
    seed=None, dtype=tf.dtypes.float32
)
  It draws samples from a uniform distribution within [-limit, limit] where limit is sqrt(6 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.
| Args | |
|---|---|
seed | 
      A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior. | 
     
dtype | 
      Default data type, used if no dtype argument is provided when calling the initializer. Only floating point types are supported. | 
     
References:
Methods
from_config
  
  @classmethod
from_config(
    config
)
  Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
  | Args | |
|---|---|
config | 
      A Python dictionary. It will typically be the output of get_config. | 
     
| Returns | |
|---|---|
| An Initializer instance. | 
get_config
  
  get_config()
  Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
  
  __call__(
    shape, dtype=None, partition_info=None
)
  Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
shape | 
      Shape of the tensor. | 
dtype | 
      Optional dtype of the tensor. If not provided use the initializer dtype. | 
partition_info | 
      Optional information about the possible partitioning of a tensor. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/keras/initializers/glorot_uniform