On this page
tf.compat.v1.math.softmax
Computes softmax activations. (deprecated arguments)
tf.compat.v1.math.softmax(
    logits, axis=None, name=None, dim=None
)
  
  This function performs the equivalent of
softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis)
  See: https://en.wikipedia.org/wiki/Softmax_function
Example usage:
tf.nn.softmax([-1, 0., 1.])
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0.09003057, 0.24472848, 0.66524094], dtype=float32)>
  | Args | |
|---|---|
logits | 
      A non-empty Tensor, or an object whose type has a registered Tensor conversion function. Must be one of the following types: half,float32, float64. See also convert_to_tensor | 
     
axis | 
      The dimension softmax would be performed on. The default is -1 which indicates the last dimension. | 
name | 
      A name for the operation (optional). | 
dim | 
      Deprecated alias for axis. | 
     
| Returns | |
|---|---|
A Tensor. Has the same type and shape as logits. | 
     
| Raises | |
|---|---|
InvalidArgumentError | 
      if logits is empty or axis is beyond the last dimension of logits. | 
     
TypeError | 
      If no conversion function is registered for logits to Tensor. | 
     
RuntimeError | 
      If a registered conversion function returns an invalid value. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/math/softmax