On this page
tf.compat.v1.nn.weighted_cross_entropy_with_logits
Computes a weighted cross entropy. (deprecated arguments)
tf.compat.v1.nn.weighted_cross_entropy_with_logits(
    labels=None, logits=None, pos_weight=None, name=None, targets=None
)
  
  This is like sigmoid_cross_entropy_with_logits() except that pos_weight, allows one to trade off recall and precision by up- or down-weighting the cost of a positive error relative to a negative error.
The usual cross-entropy cost is defined as:
labels * -log(sigmoid(logits)) +
    (1 - labels) * -log(1 - sigmoid(logits))
  A value pos_weight > 1 decreases the false negative count, hence increasing the recall. Conversely setting pos_weight < 1 decreases the false positive count and increases the precision. This can be seen from the fact that pos_weight is introduced as a multiplicative coefficient for the positive labels term in the loss expression:
labels * -log(sigmoid(logits)) * pos_weight +
    (1 - labels) * -log(1 - sigmoid(logits))
  For brevity, let x = logits, z = labels, q = pos_weight. The loss is:
  qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= qz * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= qz * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= qz * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + (qz +  1 - z) * log(1 + exp(-x))
= (1 - z) * x + (1 + (q - 1) * z) * log(1 + exp(-x))
  Setting l = (1 + (q - 1) * z), to ensure stability and avoid overflow, the implementation uses
(1 - z) * x + l * (log(1 + exp(-abs(x))) + max(-x, 0))
  logits and labels must have the same type and shape.
| Args | |
|---|---|
labels | 
      A Tensor of the same type and shape as logits. | 
     
logits | 
      A Tensor of type float32 or float64. | 
     
pos_weight | 
      A coefficient to use on the positive examples. | 
name | 
      A name for the operation (optional). | 
targets | 
      Deprecated alias for labels. | 
| Returns | |
|---|---|
A Tensor of the same shape as logits with the componentwise weighted logistic losses. | 
     
| Raises | |
|---|---|
ValueError | 
      If logits and labels do not have the same shape. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/nn/weighted_cross_entropy_with_logits