On this page
tf.compat.v1.sparse_placeholder
Inserts a placeholder for a sparse tensor that will be always fed.
tf.compat.v1.sparse_placeholder(
    dtype, shape=None, name=None
)
  
  For example:
x = tf.compat.v1.sparse.placeholder(tf.float32)
y = tf.sparse.reduce_sum(x)
with tf.compat.v1.Session() as sess:
  print(sess.run(y))  # ERROR: will fail because x was not fed.
  indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
  values = np.array([1.0, 2.0], dtype=np.float32)
  shape = np.array([7, 9, 2], dtype=np.int64)
  print(sess.run(y, feed_dict={
    x: tf.compat.v1.SparseTensorValue(indices, values, shape)}))  # Will
    succeed.
  print(sess.run(y, feed_dict={
    x: (indices, values, shape)}))  # Will succeed.
  sp = tf.sparse.SparseTensor(indices=indices, values=values,
                              dense_shape=shape)
  sp_value = sp.eval(session=sess)
  print(sess.run(y, feed_dict={x: sp_value}))  # Will succeed.
  @compatibility{eager} Placeholders are not compatible with eager execution.
| Args | |
|---|---|
dtype | 
      The type of values elements in the tensor to be fed. | 
     
shape | 
      The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a sparse tensor of any shape. | 
name | 
      A name for prefixing the operations (optional). | 
| Returns | |
|---|---|
A SparseTensor that may be used as a handle for feeding a value, but not evaluated directly. | 
     
| Raises | |
|---|---|
RuntimeError | 
      if eager execution is enabled | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/sparse_placeholder