On this page
tf.compat.v1.train.init_from_checkpoint
Replaces tf.Variable initializers so they load from a checkpoint file.
tf.compat.v1.train.init_from_checkpoint(
    ckpt_dir_or_file, assignment_map
)
  Values are not loaded immediately, but when the initializer is run (typically by running a tf.compat.v1.global_variables_initializer op).
Note: This overrides default initialization ops of specified variables and redefines dtype.
Assignment map supports following syntax:
'checkpoint_scope_name/': 'scope_name/'- will load all variables in currentscope_namefromcheckpoint_scope_namewith matching tensor names.'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name'- will initializescope_name/variable_namevariable fromcheckpoint_scope_name/some_other_variable.'scope_variable_name': variable- will initialize giventf.Variableobject with tensor 'scope_variable_name' from the checkpoint.'scope_variable_name': list(variable)- will initialize list of partitioned variables with tensor 'scope_variable_name' from the checkpoint.'/': 'scope_name/'- will load all variables in currentscope_namefrom checkpoint's root (e.g. no scope).
Supports loading into partitioned variables, which are represented as '<variable>/part_<part #>'.
Example:
# Say, '/tmp/model.ckpt' has the following tensors:
#  -- name='old_scope_1/var1', shape=[20, 2]
#  -- name='old_scope_1/var2', shape=[50, 4]
#  -- name='old_scope_2/var3', shape=[100, 100]
# Create new model's variables
with tf.compat.v1.variable_scope('new_scope_1'):
  var1 = tf.compat.v1.get_variable('var1', shape=[20, 2],
                         initializer=tf.compat.v1.zeros_initializer())
with tf.compat.v1.variable_scope('new_scope_2'):
  var2 = tf.compat.v1.get_variable('var2', shape=[50, 4],
                         initializer=tf.compat.v1.zeros_initializer())
  # Partition into 5 variables along the first axis.
  var3 = tf.compat.v1.get_variable(name='var3', shape=[100, 100],
                         initializer=tf.compat.v1.zeros_initializer(),
                         partitioner=lambda shape, dtype: [5, 1])
# Initialize all variables in `new_scope_1` from `old_scope_1`.
init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/': 'new_scope_1'})
# Use names to specify which variables to initialize from checkpoint.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': 'new_scope_1/var1',
                      'old_scope_1/var2': 'new_scope_2/var2'})
# Or use tf.Variable objects to identify what to initialize.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': var1,
                      'old_scope_1/var2': var2})
# Initialize partitioned variables using variable's name
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': 'new_scope_2/var3'})
# Or specify the list of tf.Variable objects.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': var3._get_variable_list()})
  | Args | |
|---|---|
ckpt_dir_or_file | 
      Directory with checkpoints file or path to checkpoint. | 
assignment_map | 
      Dict, where keys are names of the variables in the checkpoint and values are current variables or names of current variables (in default graph). | 
| Raises | |
|---|---|
ValueError | 
      If missing variables in current graph, or if missing checkpoints or tensors in checkpoints. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/train/init_from_checkpoint