tf.feature_column.sequence_numeric_column
  
  Returns a feature column that represents sequences of numeric data.
  
  tf.feature_column.sequence_numeric_column(
    key, shape=(1,), default_value=0.0, dtype=tf.dtypes.float32, normalizer_fn=None
)
  Example:
  temperature = sequence_numeric_column('temperature')
columns = [temperature]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)
rnn_layer = tf.keras.layers.RNN(rnn_cell)
outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)
  
   
    
     
     
    
    
     
      | Args | 
     
     
      key | 
      A unique string identifying the input features. | 
     
     
      shape | 
      The shape of the input data per sequence id. E.g. if shape=(2,), each example must contain 2 * sequence_length values. | 
     
     
      default_value | 
      A single value compatible with dtype that is used for padding the sparse data into a dense Tensor. | 
     
     
      dtype | 
      The type of values. | 
     
     
      normalizer_fn | 
      If not None, a function that can be used to normalize the value of the tensor after default_value is applied for parsing. Normalizer function takes the input Tensor as its argument, and returns the output Tensor. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. | 
     
    
   
   
  
   
    
     
     
    
    
     
      | Returns | 
     
     
      A SequenceNumericColumn. | 
     
    
   
   
  
   
    
     
     
    
    
     
      | Raises | 
     
     
      TypeError | 
      if any dimension in shape is not an int. | 
     
     
      ValueError | 
      if any dimension in shape is not a positive integer. | 
     
     
      ValueError | 
      if dtype is not convertible to tf.float32. |