On this page
tf.histogram_fixed_width
Return histogram of values.
tf.histogram_fixed_width(
    values, value_range, nbins=100, dtype=tf.dtypes.int32, name=None
)
  Given the tensor values, this operation returns a rank 1 histogram counting the number of entries in values that fell into every bin. The bins are equal width and determined by the arguments value_range and nbins.
| Args | |
|---|---|
values | 
      Numeric Tensor. | 
     
value_range | 
      Shape [2] Tensor of same dtype as values. values <= value_range[0] will be mapped to hist[0], values >= value_range[1] will be mapped to hist[-1]. | 
     
nbins | 
      Scalar int32 Tensor. Number of histogram bins. | 
     
dtype | 
      dtype for returned histogram. | 
name | 
      A name for this operation (defaults to 'histogram_fixed_width'). | 
| Returns | |
|---|---|
A 1-D Tensor holding histogram of values. | 
     
| Raises | |
|---|---|
TypeError | 
      If any unsupported dtype is provided. | 
tf.errors.InvalidArgumentError | 
      If value_range does not satisfy value_range[0] < value_range[1]. | 
Examples:
# Bins will be:  (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]
hist = tf.histogram_fixed_width(new_values, value_range, nbins=5)
hist.numpy()
array([2, 1, 1, 0, 2], dtype=int32)
 © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/histogram_fixed_width