On this page
tf.keras.layers.Cropping2D
Cropping layer for 2D input (e.g. picture).
Inherits From: Layer
tf.keras.layers.Cropping2D(
    cropping=((0, 0), (0, 0)), data_format=None, **kwargs
)
  It crops along spatial dimensions, i.e. height and width.
Examples:
input_shape = (2, 28, 28, 3)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
y = tf.keras.layers.Cropping2D(cropping=((2, 2), (4, 4)))(x)
print(y.shape)
(2, 24, 20, 3)
  | Arguments | |
|---|---|
cropping | 
      Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints. 
       
  | 
     
data_format | 
      A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last". | 
     
Input shape:
4D tensor with shape:
- If 
data_formatis"channels_last":(batch_size, rows, cols, channels) - If 
data_formatis"channels_first":(batch_size, channels, rows, cols) 
Output shape:
4D tensor with shape:
- If 
data_formatis"channels_last":(batch_size, cropped_rows, cropped_cols, channels) - If 
data_formatis"channels_first":(batch_size, channels, cropped_rows, cropped_cols) 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/Cropping2D