On this page
tf.keras.layers.DepthwiseConv2D
Depthwise separable 2D convolution.
Inherits From: Conv2D
tf.keras.layers.DepthwiseConv2D(
    kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1,
    data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True,
    depthwise_initializer='glorot_uniform', bias_initializer='zeros',
    depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    depthwise_constraint=None, bias_constraint=None, **kwargs
)
  Depthwise Separable convolutions consist of performing just the first step in a depthwise spatial convolution (which acts on each input channel separately). The depth_multiplier argument controls how many output channels are generated per input channel in the depthwise step.
| Arguments | |
|---|---|
kernel_size | 
      An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. | 
strides | 
      An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. | 
     
padding | 
      one of 'valid' or 'same' (case-insensitive). | 
     
depth_multiplier | 
      The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to filters_in * depth_multiplier. | 
     
data_format | 
      A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be 'channels_last'. | 
     
dilation_rate | 
      An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1. | 
     
activation | 
      Activation function to use. If you don't specify anything, no activation is applied ( see keras.activations). | 
     
use_bias | 
      Boolean, whether the layer uses a bias vector. | 
depthwise_initializer | 
      Initializer for the depthwise kernel matrix ( see keras.initializers). | 
     
bias_initializer | 
      Initializer for the bias vector ( see keras.initializers). | 
     
depthwise_regularizer | 
      Regularizer function applied to the depthwise kernel matrix (see keras.regularizers). | 
     
bias_regularizer | 
      Regularizer function applied to the bias vector ( see keras.regularizers). | 
     
activity_regularizer | 
      Regularizer function applied to the output of the layer (its 'activation') ( see keras.regularizers). | 
     
depthwise_constraint | 
      Constraint function applied to the depthwise kernel matrix ( see keras.constraints). | 
     
bias_constraint | 
      Constraint function applied to the bias vector ( see keras.constraints). | 
     
Input shape:
4D tensor with shape: [batch_size, channels, rows, cols] if data_format='channels_first' or 4D tensor with shape: [batch_size, rows, cols, channels] if data_format='channels_last'.
Output shape:
4D tensor with shape: [batch_size, filters, new_rows, new_cols] if data_format='channels_first' or 4D tensor with shape: [batch_size, new_rows, new_cols, filters] if data_format='channels_last'. rows and cols values might have changed due to padding.
| Returns | |
|---|---|
A tensor of rank 4 representing activation(depthwiseconv2d(inputs, kernel) + bias). | 
     
| Raises | |
|---|---|
ValueError | 
      if padding is "causal". | 
     
ValueError | 
      when both strides > 1 and dilation_rate > 1. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/DepthwiseConv2D