On this page
tf.keras.layers.GlobalMaxPool2D
Global max pooling operation for spatial data.
tf.keras.layers.GlobalMaxPool2D(
    data_format=None, **kwargs
)
  Examples:
input_shape = (2, 4, 5, 3)
x = tf.random.normal(input_shape)
y = tf.keras.layers.GlobalMaxPool2D()(x)
print(y.shape)
(2, 3)
  | Arguments | |
|---|---|
data_format | 
      A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last". | 
     
Input shape:
- If 
data_format='channels_last': 4D tensor with shape(batch_size, rows, cols, channels). - If 
data_format='channels_first': 4D tensor with shape(batch_size, channels, rows, cols). 
Output shape:
2D tensor with shape (batch_size, channels).
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/GlobalMaxPool2D