On this page
tf.keras.layers.MaxPool1D
Max pooling operation for 1D temporal data.
tf.keras.layers.MaxPool1D(
    pool_size=2, strides=None, padding='valid', data_format='channels_last',
    **kwargs
)
  Downsamples the input representation by taking the maximum value over the window defined by pool_size. The window is shifted by strides. The resulting output when using "valid" padding option has a shape of: output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is: output_shape = input_shape / strides
For example, for strides=1 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
   strides=1, padding='valid')
max_pool_1d(x)
<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=
array([[[2.],
        [3.],
        [4.],
        [5.]]], dtype=float32)>
  For example, for strides=2 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
   strides=2, padding='valid')
max_pool_1d(x)
<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=
array([[[2.],
        [4.]]], dtype=float32)>
  For example, for strides=1 and padding="same":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
   strides=1, padding='same')
max_pool_1d(x)
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[2.],
        [3.],
        [4.],
        [5.],
        [5.]]], dtype=float32)>
  | Arguments | |
|---|---|
pool_size | 
      Integer, size of the max pooling window. | 
strides | 
      Integer, or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to pool_size. | 
     
padding | 
      One of "valid" or "same" (case-insensitive). "valid" adds no padding. "same" adds padding such that if the stride is 1, the output shape is the same as the input shape. | 
     
data_format | 
      A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, steps, features) while channels_first corresponds to inputs with shape (batch, features, steps). | 
     
Input shape:
- If 
data_format='channels_last': 3D tensor with shape(batch_size, steps, features). - If 
data_format='channels_first': 3D tensor with shape(batch_size, features, steps). 
Output shape:
- If 
data_format='channels_last': 3D tensor with shape(batch_size, downsampled_steps, features). - If 
data_format='channels_first': 3D tensor with shape(batch_size, features, downsampled_steps). 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/MaxPool1D