On this page
tf.linalg.lu_matrix_inverse
Computes the inverse given the LU decomposition(s) of one or more matrices.
tf.linalg.lu_matrix_inverse(
    lower_upper, perm, validate_args=False, name=None
)
  This op is conceptually identical to,
inv_X = tf.lu_matrix_inverse(*tf.linalg.lu(X))
tf.assert_near(tf.matrix_inverse(X), inv_X)
# ==> True
  Note: this function does not verify the implied matrix is actually invertible nor is this condition checked even when validate_args=True.
  
  | Args | |
|---|---|
lower_upper | 
      lu as returned by tf.linalg.lu, i.e., if matmul(P, matmul(L, U)) = X then lower_upper = L + U - eye. | 
     
perm | 
      p as returned by tf.linag.lu, i.e., if matmul(P, matmul(L, U)) = X then perm = argmax(P). | 
     
validate_args | 
      Python bool indicating whether arguments should be checked for correctness. Note: this function does not verify the implied matrix is actually invertible, even when validate_args=True. Default value: False (i.e., don't validate arguments). | 
     
name | 
      Python str name given to ops managed by this object. Default value: None (i.e., 'lu_matrix_inverse'). | 
     
| Returns | |
|---|---|
inv_x | 
      The matrix_inv, i.e., tf.matrix_inverse(tf.linalg.lu_reconstruct(lu, perm)). | 
     
Examples
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
x = [[[3., 4], [1, 2]],
     [[7., 8], [3, 4]]]
inv_x = tf.linalg.lu_matrix_inverse(*tf.linalg.lu(x))
tf.assert_near(tf.matrix_inverse(x), inv_x)
# ==> True
 © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/linalg/lu_matrix_inverse