On this page
tf.linalg.svd
   
Computes the singular value decompositions of one or more matrices.
tf.linalg.svd(
    tensor, full_matrices=False, compute_uv=True, name=None
)
  Computes the SVD of each inner matrix in tensor such that tensor[..., :, :] = u[..., :, :] * diag(s[..., :, :]) * transpose(conj(v[..., :, :]))
# a is a tensor.
# s is a tensor of singular values.
# u is a tensor of left singular vectors.
# v is a tensor of right singular vectors.
s, u, v = svd(a)
s = svd(a, compute_uv=False)
  | Args | |
|---|---|
tensor | 
      Tensor of shape [..., M, N]. Let P be the minimum of M and N. | 
     
full_matrices | 
      If true, compute full-sized u and v. If false (the default), compute only the leading P singular vectors. Ignored if compute_uv is False. | 
     
compute_uv | 
      If True then left and right singular vectors will be computed and returned in u and v, respectively. Otherwise, only the singular values will be computed, which can be significantly faster. | 
     
name | 
      string, optional name of the operation. | 
| Returns | |
|---|---|
s | 
      Singular values. Shape is [..., P]. The values are sorted in reverse order of magnitude, so s[..., 0] is the largest value, s[..., 1] is the second largest, etc. | 
     
u | 
      Left singular vectors. If full_matrices is False (default) then shape is [..., M, P]; if full_matrices is True then shape is [..., M, M]. Not returned if compute_uv is False. | 
     
v | 
      Right singular vectors. If full_matrices is False (default) then shape is [..., N, P]. If full_matrices is True then shape is [..., N, N]. Not returned if compute_uv is False. | 
     
Numpy Compatibility
Mostly equivalent to numpy.linalg.svd, except that
- The order of output arguments here is 
s,u,vwhencompute_uvisTrue, as opposed tou,s,vfor numpy.linalg.svd. - full_matrices is 
Falseby default as opposed toTruefor numpy.linalg.svd. - tf.linalg.svd uses the standard definition of the SVD \(A = U \Sigma V^H\), such that the left singular vectors of 
aare the columns ofu, while the right singular vectors ofaare the columns ofv. On the other hand, numpy.linalg.svd returns the adjoint \(V^H\) as the third output argument. 
import tensorflow as tf
import numpy as np
s, u, v = tf.linalg.svd(a)
tf_a_approx = tf.matmul(u, tf.matmul(tf.linalg.diag(s), v, adjoint_b=True))
u, s, v_adj = np.linalg.svd(a, full_matrices=False)
np_a_approx = np.dot(u, np.dot(np.diag(s), v_adj))
# tf_a_approx and np_a_approx should be numerically close.
 © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/linalg/svd