On this page
tf.math.reduce_max
Computes the maximum of elements across dimensions of a tensor.
tf.math.reduce_max(
    input_tensor, axis=None, keepdims=False, name=None
)
  Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are retained with length 1.
If axis is None, all dimensions are reduced, and a tensor with a single element is returned.
Usage example:
x = tf.constant([5, 1, 2, 4])
print(tf.reduce_max(x))
tf.Tensor(5, shape=(), dtype=int32)
x = tf.constant([-5, -1, -2, -4])
print(tf.reduce_max(x))
tf.Tensor(-1, shape=(), dtype=int32)
x = tf.constant([4, float('nan')])
print(tf.reduce_max(x))
tf.Tensor(4.0, shape=(), dtype=float32)
x = tf.constant([float('nan'), float('nan')])
print(tf.reduce_max(x))
tf.Tensor(-inf, shape=(), dtype=float32)
x = tf.constant([float('-inf'), float('inf')])
print(tf.reduce_max(x))
tf.Tensor(inf, shape=(), dtype=float32)
  See the numpy docs for np.amax and np.nanmax behavior.
| Args | |
|---|---|
input_tensor | 
      The tensor to reduce. Should have real numeric type. | 
axis | 
      The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)). | 
     
keepdims | 
      If true, retains reduced dimensions with length 1. | 
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
| The reduced tensor. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/math/reduce_max