On this page
tf.ragged.cross_hashed
Generates hashed feature cross from a list of tensors.
tf.ragged.cross_hashed(
    inputs, num_buckets=0, hash_key=None, name=None
)
  The input tensors must have rank=2, and must all have the same number of rows. The result is a RaggedTensor with the same number of rows as the inputs, where result[row] contains a list of all combinations of values formed by taking a single value from each input's corresponding row (inputs[i][row]). Values are combined by hashing together their fingerprints. E.g.:
tf.ragged.cross_hashed([tf.ragged.constant([['a'], ['b', 'c']]),
                        tf.ragged.constant([['d'], ['e']]),
                        tf.ragged.constant([['f'], ['g']])],
                       num_buckets=100)
<tf.RaggedTensor [[78], [66, 74]]>
  | Args | |
|---|---|
inputs | 
      A list of RaggedTensor or Tensor or SparseTensor. | 
     
num_buckets | 
      A non-negative int that used to bucket the hashed values. If num_buckets != 0, then output = hashed_value % num_buckets. | 
     
hash_key | 
      Integer hash_key that will be used by the FingerprintCat64 function. If not given, a default key is used. | 
     
name | 
      Optional name for the op. | 
| Returns | |
|---|---|
A 2D RaggedTensor of type int64. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/ragged/cross_hashed