On this page
tf.ragged.stack
Stacks a list of rank-R tensors into one rank-(R+1) RaggedTensor.
tf.ragged.stack(
    values, axis=0, name=None
)
  Given a list of tensors or ragged tensors with the same rank R (R >= axis), returns a rank-R+1 RaggedTensor result such that result[i0...iaxis] is [value[i0...iaxis] for value in values].
Examples:
# Stacking two ragged tensors.
t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
t2 = tf.ragged.constant([[6], [7, 8, 9]])
tf.ragged.stack([t1, t2], axis=0)
<tf.RaggedTensor [[[1, 2], [3, 4, 5]], [[6], [7, 8, 9]]]>
tf.ragged.stack([t1, t2], axis=1)
<tf.RaggedTensor [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]]>
  # Stacking two dense tensors with different sizes.
t3 = tf.constant([[1, 2, 3], [4, 5, 6]])
t4 = tf.constant([[5], [6], [7]])
tf.ragged.stack([t3, t4], axis=0)
<tf.RaggedTensor [[[1, 2, 3], [4, 5, 6]], [[5], [6], [7]]]>
  | Args | |
|---|---|
values | 
      A list of tf.Tensor or tf.RaggedTensor. May not be empty. All values must have the same rank and the same dtype; but unlike tf.stack, they can have arbitrary dimension sizes. | 
     
axis | 
      A python integer, indicating the dimension along which to stack. (Note: Unlike tf.stack, the axis parameter must be statically known.) Negative values are supported only if the rank of at least one values value is statically known. | 
     
name | 
      A name prefix for the returned tensor (optional). | 
| Returns | |
|---|---|
A RaggedTensor with rank R+1. result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values])). | 
     
| Raises | |
|---|---|
ValueError | 
      If values is empty, if axis is out of bounds or if the input tensors have different ranks. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/ragged/stack