On this page
tf.random.categorical
Draws samples from a categorical distribution.
tf.random.categorical(
    logits, num_samples, dtype=None, seed=None, name=None
)
  Example:
# samples has shape [1, 5], where each value is either 0 or 1 with equal
# probability.
samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
  | Args | |
|---|---|
logits | 
      2-D Tensor with shape [batch_size, num_classes]. Each slice [i, :] represents the unnormalized log-probabilities for all classes. | 
     
num_samples | 
      0-D. Number of independent samples to draw for each row slice. | 
dtype | 
      integer type to use for the output. Defaults to int64. | 
seed | 
      A Python integer. Used to create a random seed for the distribution. See tf.random.set_seed for behavior. | 
     
name | 
      Optional name for the operation. | 
| Returns | |
|---|---|
The drawn samples of shape [batch_size, num_samples]. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/random/categorical