On this page
tf.random.gamma
Draws shape samples from each of the given Gamma distribution(s).
tf.random.gamma(
    shape, alpha, beta=None, dtype=tf.dtypes.float32, seed=None, name=None
)
  alpha is the shape parameter describing the distribution(s), and beta is the inverse scale parameter(s).
Note: Because internal calculations are done usingfloat64and casting hasfloorsemantics, we must manually map zero outcomes to the smallest possible positive floating-point value, i.e.,np.finfo(dtype).tiny. This means thatnp.finfo(dtype).tinyoccurs more frequently than it otherwise should. This bias can only happen for small values ofalpha, i.e.,alpha << 1or large values ofbeta, i.e.,beta >> 1.
The samples are differentiable w.r.t. alpha and beta. The derivatives are computed using the approach described in (Figurnov et al., 2018).
Example:
samples = tf.random.gamma([10], [0.5, 1.5])
# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
# the samples drawn from each distribution
samples = tf.random.gamma([7, 5], [0.5, 1.5])
# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
# represents the 7x5 samples drawn from each of the two distributions
alpha = tf.constant([[1.],[3.],[5.]])
beta = tf.constant([[3., 4.]])
samples = tf.random.gamma([30], alpha=alpha, beta=beta)
# samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.
loss = tf.reduce_mean(tf.square(samples))
dloss_dalpha, dloss_dbeta = tf.gradients(loss, [alpha, beta])
# unbiased stochastic derivatives of the loss function
alpha.shape == dloss_dalpha.shape  # True
beta.shape == dloss_dbeta.shape  # True
  | Args | |
|---|---|
shape | 
      A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per alpha/beta-parameterized distribution. | 
alpha | 
      A Tensor or Python value or N-D array of type dtype. alpha provides the shape parameter(s) describing the gamma distribution(s) to sample. Must be broadcastable with beta. | 
     
beta | 
      A Tensor or Python value or N-D array of type dtype. Defaults to 1. beta provides the inverse scale parameter(s) of the gamma distribution(s) to sample. Must be broadcastable with alpha. | 
     
dtype | 
      The type of alpha, beta, and the output: float16, float32, or float64. | 
     
seed | 
      A Python integer. Used to create a random seed for the distributions. See tf.random.set_seed for behavior. | 
     
name | 
      Optional name for the operation. | 
| Returns | |
|---|---|
samples | 
      a Tensor of shape tf.concat([shape, tf.shape(alpha + beta)], axis=0) with values of type dtype. | 
     
References:
Implicit Reparameterization Gradients: Figurnov et al., 2018 (pdf)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/random/gamma