On this page
tf.raw_ops.FakeQuantWithMinMaxVarsPerChannelGradient
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
tf.raw_ops.FakeQuantWithMinMaxVarsPerChannelGradient(
    gradients, inputs, min, max, num_bits=8, narrow_range=False, name=None
)
  | Args | |
|---|---|
gradients | 
      A Tensor of type float32. Backpropagated gradients above the FakeQuantWithMinMaxVars operation, shape one of: [d], [b, d], [b, h, w, d]. | 
     
inputs | 
      A Tensor of type float32. Values passed as inputs to the FakeQuantWithMinMaxVars operation, shape same as gradients. min, max: Quantization interval, floats of shape [d]. | 
     
min | 
      A Tensor of type float32. | 
     
max | 
      A Tensor of type float32. | 
     
num_bits | 
      An optional int. Defaults to 8. The bitwidth of the quantization; between 2 and 16, inclusive. | 
     
narrow_range | 
      An optional bool. Defaults to False. Whether to quantize into 2^num_bits - 1 distinct values. | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A tuple of Tensor objects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max). | 
     |
backprops_wrt_input | 
      A Tensor of type float32. | 
     
backprop_wrt_min | 
      A Tensor of type float32. | 
     
backprop_wrt_max | 
      A Tensor of type float32. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/FakeQuantWithMinMaxVarsPerChannelGradient