On this page
tf.raw_ops.InterleaveDataset
Creates a dataset that applies f to the outputs of input_dataset.
tf.raw_ops.InterleaveDataset(
    input_dataset, other_arguments, cycle_length, block_length, f, output_types,
    output_shapes, name=None
)
  Unlike MapDataset, the f in InterleaveDataset is expected to return a Dataset variant, and InterleaveDataset will flatten successive results into a single Dataset. Unlike FlatMapDataset, InterleaveDataset will interleave sequences of up to block_length consecutive elements from cycle_length input elements.
| Args | |
|---|---|
input_dataset | 
      A Tensor of type variant. | 
     
other_arguments | 
      A list of Tensor objects. | 
     
cycle_length | 
      A Tensor of type int64. | 
     
block_length | 
      A Tensor of type int64. | 
     
f | 
      A function decorated with @Defun. A function mapping elements of input_dataset, concatenated with other_arguments, to a Dataset variant that contains elements matching output_types and output_shapes. | 
     
output_types | 
      A list of tf.DTypes that has length >= 1. | 
     
output_shapes | 
      A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A Tensor of type variant. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/InterleaveDataset