On this page
tf.raw_ops.LegacyParallelInterleaveDatasetV2
Creates a dataset that applies f to the outputs of input_dataset.
tf.raw_ops.LegacyParallelInterleaveDatasetV2(
    input_dataset, other_arguments, cycle_length, block_length,
    buffer_output_elements, prefetch_input_elements, f, output_types, output_shapes,
    deterministic='default', name=None
)
  The resulting dataset is similar to the InterleaveDataset, with the exception that if retrieving the next value from a dataset would cause the requester to block, it will skip that input dataset. This dataset is especially useful when loading data from a variable-latency datastores (e.g. HDFS, GCS), as it allows the training step to proceed so long as some data is available.
!! WARNING !! This dataset is not deterministic!
| Args | |
|---|---|
input_dataset | 
      A Tensor of type variant. | 
     
other_arguments | 
      A list of Tensor objects. | 
     
cycle_length | 
      A Tensor of type int64. | 
     
block_length | 
      A Tensor of type int64. | 
     
buffer_output_elements | 
      A Tensor of type int64. | 
     
prefetch_input_elements | 
      A Tensor of type int64. | 
     
f | 
      A function decorated with @Defun. A function mapping elements of input_dataset, concatenated with other_arguments, to a Dataset variant that contains elements matching output_types and output_shapes. | 
     
output_types | 
      A list of tf.DTypes that has length >= 1. | 
     
output_shapes | 
      A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. | 
     
deterministic | 
      An optional string. Defaults to "default". | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A Tensor of type variant. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/LegacyParallelInterleaveDatasetV2