On this page
tf.raw_ops.LoadTPUEmbeddingAdagradParametersGradAccumDebug
Load Adagrad embedding parameters with debug support.
tf.raw_ops.LoadTPUEmbeddingAdagradParametersGradAccumDebug(
    parameters, accumulators, gradient_accumulators, num_shards, shard_id,
    table_id=-1, table_name='', config='', name=None
)
  An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed.
| Args | |
|---|---|
parameters | 
      A Tensor of type float32. Value of parameters used in the Adagrad optimization algorithm. | 
     
accumulators | 
      A Tensor of type float32. Value of accumulators used in the Adagrad optimization algorithm. | 
     
gradient_accumulators | 
      A Tensor of type float32. Value of gradient_accumulators used in the Adagrad optimization algorithm. | 
     
num_shards | 
      An int. | 
     
shard_id | 
      An int. | 
     
table_id | 
      An optional int. Defaults to -1. | 
     
table_name | 
      An optional string. Defaults to "". | 
     
config | 
      An optional string. Defaults to "". | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
| The created Operation. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/LoadTPUEmbeddingAdagradParametersGradAccumDebug