On this page
tf.raw_ops.LRNGrad
Gradients for Local Response Normalization.
tf.raw_ops.LRNGrad(
    input_grads, input_image, output_image, depth_radius=5, bias=1, alpha=1,
    beta=0.5, name=None
)
  | Args | |
|---|---|
input_grads | 
      A Tensor. Must be one of the following types: half, bfloat16, float32. 4-D with shape [batch, height, width, channels]. | 
     
input_image | 
      A Tensor. Must have the same type as input_grads. 4-D with shape [batch, height, width, channels]. | 
     
output_image | 
      A Tensor. Must have the same type as input_grads. 4-D with shape [batch, height, width, channels]. | 
     
depth_radius | 
      An optional int. Defaults to 5. A depth radius. | 
     
bias | 
      An optional float. Defaults to 1. An offset (usually > 0 to avoid dividing by 0). | 
     
alpha | 
      An optional float. Defaults to 1. A scale factor, usually positive. | 
     
beta | 
      An optional float. Defaults to 0.5. An exponent. | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A Tensor. Has the same type as input_grads. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/LRNGrad