On this page
tf.raw_ops.QuantizedRelu
Computes Quantized Rectified Linear: max(features, 0)
tf.raw_ops.QuantizedRelu(
    features, min_features, max_features, out_type=tf.dtypes.quint8, name=None
)
  | Args | |
|---|---|
features | 
      A Tensor. Must be one of the following types: qint8, quint8, qint32, qint16, quint16. | 
     
min_features | 
      A Tensor of type float32. The float value that the lowest quantized value represents. | 
     
max_features | 
      A Tensor of type float32. The float value that the highest quantized value represents. | 
     
out_type | 
      An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16. Defaults to tf.quint8. | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A tuple of Tensor objects (activations, min_activations, max_activations). | 
     |
activations | 
      A Tensor of type out_type. | 
     
min_activations | 
      A Tensor of type float32. | 
     
max_activations | 
      A Tensor of type float32. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/QuantizedRelu