On this page
tf.raw_ops.QuantizedResizeBilinear
Resize quantized images to size using quantized bilinear interpolation.
tf.raw_ops.QuantizedResizeBilinear(
    images, size, min, max, align_corners=False, half_pixel_centers=False, name=None
)
  Input images and output images must be quantized types.
| Args | |
|---|---|
images | 
      A Tensor. Must be one of the following types: quint8, qint32, float32. 4-D with shape [batch, height, width, channels]. | 
     
size | 
      A 1-D int32 Tensor of 2 elements: new_height, new_width. The new size for the images. | 
     
min | 
      A Tensor of type float32. | 
     
max | 
      A Tensor of type float32. | 
     
align_corners | 
      An optional bool. Defaults to False. If true, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Defaults to false. | 
     
half_pixel_centers | 
      An optional bool. Defaults to False. | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A tuple of Tensor objects (resized_images, out_min, out_max). | 
     |
resized_images | 
      A Tensor. Has the same type as images. | 
     
out_min | 
      A Tensor of type float32. | 
     
out_max | 
      A Tensor of type float32. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/QuantizedResizeBilinear