On this page
tf.raw_ops.RequantizationRange
Computes a range that covers the actual values present in a quantized tensor.
tf.raw_ops.RequantizationRange(
    input, input_min, input_max, name=None
)
  Given a quantized tensor described by (input, input_min, input_max), outputs a range that covers the actual values present in that tensor. This op is typically used to produce the requested_output_min and requested_output_max for Requantize.
| Args | |
|---|---|
input | 
      A Tensor. Must be one of the following types: qint8, quint8, qint32, qint16, quint16. | 
     
input_min | 
      A Tensor of type float32. The float value that the minimum quantized input value represents. | 
     
input_max | 
      A Tensor of type float32. The float value that the maximum quantized input value represents. | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A tuple of Tensor objects (output_min, output_max). | 
     |
output_min | 
      A Tensor of type float32. | 
     
output_max | 
      A Tensor of type float32. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/RequantizationRange