On this page
tf.raw_ops.SparseSlice
Slice a SparseTensor based on the start and size.
tf.raw_ops.SparseSlice(
    indices, values, shape, start, size, name=None
)
  For example, if the input is
input_tensor = shape = [2, 7]
[    a   d e  ]
[b c          ]
  Graphically the output tensors are:
sparse_slice([0, 0], [2, 4]) = shape = [2, 4]
[    a  ]
[b c    ]
sparse_slice([0, 4], [2, 3]) = shape = [2, 3]
[ d e  ]
[      ]
  | Args | |
|---|---|
indices | 
      A Tensor of type int64. 2-D tensor represents the indices of the sparse tensor. | 
     
values | 
      A Tensor. 1-D tensor represents the values of the sparse tensor. | 
     
shape | 
      A Tensor of type int64. 1-D. tensor represents the shape of the sparse tensor. | 
     
start | 
      A Tensor of type int64. 1-D. tensor represents the start of the slice. | 
     
size | 
      A Tensor of type int64. 1-D. tensor represents the size of the slice. output indices: A list of 1-D tensors represents the indices of the output sparse tensors. | 
     
name | 
      A name for the operation (optional). | 
| Returns | |
|---|---|
A tuple of Tensor objects (output_indices, output_values, output_shape). | 
     |
output_indices | 
      A Tensor of type int64. | 
     
output_values | 
      A Tensor. Has the same type as values. | 
     
output_shape | 
      A Tensor of type int64. | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/SparseSlice