On this page
tf.io.RaggedFeature
Configuration for passing a RaggedTensor input feature.
tf.io.RaggedFeature(
    dtype, value_key=None, partitions=(), row_splits_dtype=tf.dtypes.int32,
    validate=False
)
value_key specifies the feature key for a variable-length list of values; and partitions specifies zero or more feature keys for partitioning those values into higher dimensions. Each element of partitions must be one of the following:
- tf.io.RaggedFeature.RowSplits(key: string)
- tf.io.RaggedFeature.RowLengths(key: string)
- tf.io.RaggedFeature.RowStarts(key: string)
- tf.io.RaggedFeature.RowLimits(key: string)
- tf.io.RaggedFeature.ValueRowIds(key: string)
- tf.io.RaggedFeature.UniformRowLength(length: int).
Where key is a feature key whose values are used to partition the values. Partitions are listed from outermost to innermost.
- If - len(partitions) == 0(the default), then:- A feature from a single tf.Exampleis parsed into a 1Dtf.Tensor.
- A feature from a batch of tf.Examples is parsed into a 2Dtf.RaggedTensor, where the outer dimension is the batch dimension, and the inner (ragged) dimension is the feature length in each example.
 
- A feature from a single 
- If - len(partitions) == 1, then:- A feature from a single - tf.Exampleis parsed into a 2D- tf.RaggedTensor, where the values taken from the- value_keyare separated into rows using the partition key.
- A feature from a batch of - tf.Examples is parsed into a 3D- tf.RaggedTensor, where the outer dimension is the batch dimension, the two inner dimensions are formed by separating the- value_keyvalues from each example into rows using that example's partition key.
 
- If - len(partitions) > 1, then:- A feature from a single - tf.Exampleis parsed into a- tf.RaggedTensorwhose rank is- len(partitions)+1, and whose ragged_rank is- len(partitions).
- A feature from a batch of - tf.Examples is parsed into a- tf.RaggedTensorwhose rank is- len(partitions)+2and whose ragged_rank is- len(partitions)+1, where the outer dimension is the batch dimension.
 
There is one exception: if the final (i.e., innermost) element(s) of partitions are UniformRowLengths, then the values are simply reshaped (as a higher-dimensional tf.Tensor), rather than being wrapped in a tf.RaggedTensor.
Examples
import google.protobuf.text_format as pbtext
example_batch = [
  pbtext.Merge(r'''
    features {
      feature {key: "v" value {int64_list {value: [3, 1, 4, 1, 5, 9]} } }
      feature {key: "s1" value {int64_list {value: [0, 2, 3, 3, 6]} } }
      feature {key: "s2" value {int64_list {value: [0, 2, 3, 4]} } }
    }''', tf.train.Example()).SerializeToString(),
  pbtext.Merge(r'''
    features {
      feature {key: "v" value {int64_list {value: [2, 7, 1, 8, 2, 8, 1]} } }
      feature {key: "s1" value {int64_list {value: [0, 3, 4, 5, 7]} } }
      feature {key: "s2" value {int64_list {value: [0, 1, 1, 4]} } }
    }''', tf.train.Example()).SerializeToString()]
features = {
    # Zero partitions: returns 1D tf.Tensor for each Example.
    'f1': tf.io.RaggedFeature(value_key="v", dtype=tf.int64),
    # One partition: returns 2D tf.RaggedTensor for each Example.
    'f2': tf.io.RaggedFeature(value_key="v", dtype=tf.int64, partitions=[
        tf.io.RaggedFeature.RowSplits("s1")]),
    # Two partitions: returns 3D tf.RaggedTensor for each Example.
    'f3': tf.io.RaggedFeature(value_key="v", dtype=tf.int64, partitions=[
        tf.io.RaggedFeature.RowSplits("s2"),
        tf.io.RaggedFeature.RowSplits("s1")])
}
feature_dict = tf.io.parse_single_example(example_batch[0], features)
for (name, val) in sorted(feature_dict.items()):
  print('%s: %s' % (name, val))
f1: tf.Tensor([3 1 4 1 5 9], shape=(6,), dtype=int64)
f2: <tf.RaggedTensor [[3, 1], [4], [], [1, 5, 9]]>
f3: <tf.RaggedTensor [[[3, 1], [4]], [[]], [[1, 5, 9]]]>
feature_dict = tf.io.parse_example(example_batch, features)
for (name, val) in sorted(feature_dict.items()):
  print('%s: %s' % (name, val))
f1: <tf.RaggedTensor [[3, 1, 4, 1, 5, 9],
                      [2, 7, 1, 8, 2, 8, 1]]>
f2: <tf.RaggedTensor [[[3, 1], [4], [], [1, 5, 9]],
                      [[2, 7, 1], [8], [2], [8, 1]]]>
f3: <tf.RaggedTensor [[[[3, 1], [4]], [[]], [[1, 5, 9]]],
                      [[[2, 7, 1]], [], [[8], [2], [8, 1]]]]>
Fields:
- dtype: Data type of the- RaggedTensor. Must be one of:- tf.dtypes.int64,- tf.dtypes.float32,- tf.dtypes.string.
- value_key: (Optional.) Key for a- Featurein the input- Example, whose parsed- Tensorwill be the resulting- RaggedTensor.flat_values. If not specified, then it defaults to the key for this- RaggedFeature.
- partitions: (Optional.) A list of objects specifying the row-partitioning tensors (from outermost to innermost). Each entry in this list must be one of:- tf.io.RaggedFeature.RowSplits(key: string)
- tf.io.RaggedFeature.RowLengths(key: string)
- tf.io.RaggedFeature.RowStarts(key: string)
- tf.io.RaggedFeature.RowLimits(key: string)
- tf.io.RaggedFeature.ValueRowIds(key: string)
- tf.io.RaggedFeature.UniformRowLength(length: int). Where- keyis a key for a- Featurein the input- Example, whose parsed- Tensorwill be the resulting row-partitioning tensor.
 
- row_splits_dtype: (Optional.) Data type for the row-partitioning tensor(s). One of- int32or- int64. Defaults to- int32.
- validate: (Optional.) Boolean indicating whether or not to validate that the input values form a valid RaggedTensor. Defaults to- False.
| Attributes | |
|---|---|
| dtype | |
| value_key | |
| partitions | |
| row_splits_dtype | |
| validate | |
Child Classes
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/io/RaggedFeature