On this page
tf.keras.applications.inception_v3.preprocess_input
Preprocesses a tensor or Numpy array encoding a batch of images.
tf.keras.applications.inception_v3.preprocess_input(
    x, data_format=None
)
Usage example with applications.MobileNet:
i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8)
x = tf.cast(i, tf.float32)
x = tf.keras.applications.mobilenet.preprocess_input(x)
core = tf.keras.applications.MobileNet()
x = core(x)
model = tf.keras.Model(inputs=[i], outputs=[x])
image = tf.image.decode_png(tf.io.read_file('file.png'))
result = model(image)
| Arguments | |
|---|---|
| x | A floating point numpy.arrayor atf.Tensor, 3D or 4D with 3 color channels, with values in the range [0, 255]. The preprocessed data are written over the input data if the data types are compatible. To avoid this behaviour,numpy.copy(x)can be used. | 
| data_format | Optional data format of the image tensor/array. Defaults to None, in which case the global setting tf.keras.backend.image_data_format()is used (unless you changed it, it defaults to "channels_last"). | 
| Returns | |
|---|---|
| Preprocessed numpy.arrayor atf.Tensorwith typefloat32.The inputs pixel values are scaled between -1 and 1, sample-wise. | 
| Raises | |
|---|---|
| ValueError | In case of unknown data_formatargument. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/applications/inception_v3/preprocess_input