On this page
tf.keras.layers.AveragePooling1D
Average pooling for temporal data.
tf.keras.layers.AveragePooling1D(
    pool_size=2, strides=None, padding='valid',
    data_format='channels_last', **kwargs
)
| Arguments | |
|---|---|
| pool_size | Integer, size of the average pooling windows. | 
| strides | Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to pool_size. | 
| padding | One of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. | 
| data_format | A string, one of channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, steps, features)whilechannels_firstcorresponds to inputs with shape(batch, features, steps). | 
Input shape:
- If data_format='channels_last': 3D tensor with shape(batch_size, steps, features).
- If data_format='channels_first': 3D tensor with shape(batch_size, features, steps).
Output shape:
- If data_format='channels_last': 3D tensor with shape(batch_size, downsampled_steps, features).
- If data_format='channels_first': 3D tensor with shape(batch_size, features, downsampled_steps).
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/AveragePooling1D