On this page
tf.keras.layers.GlobalMaxPool1D
Global max pooling operation for 1D temporal data.
tf.keras.layers.GlobalMaxPool1D(
    data_format='channels_last', **kwargs
)
Downsamples the input representation by taking the maximum value over the time dimension.
For example:
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
x = tf.reshape(x, [3, 3, 1])
x
<tf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=
array([[[1.], [2.], [3.]],
       [[4.], [5.], [6.]],
       [[7.], [8.], [9.]]], dtype=float32)>
max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()
max_pool_1d(x)
<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[3.],
       [6.],
       [9.], dtype=float32)>
| Arguments | |
|---|---|
| data_format | A string, one of channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, steps, features)whilechannels_firstcorresponds to inputs with shape(batch, features, steps). | 
Input shape:
- If data_format='channels_last': 3D tensor with shape:(batch_size, steps, features)
- If data_format='channels_first': 3D tensor with shape:(batch_size, features, steps)
Output shape:
2D tensor with shape (batch_size, features).
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/GlobalMaxPool1D