On this page
tf.keras.layers.SeparableConv2D
Depthwise separable 2D convolution.
tf.keras.layers.SeparableConv2D(
    filters, kernel_size, strides=(1, 1), padding='valid',
    data_format=None, dilation_rate=(1, 1), depth_multiplier=1, activation=None,
    use_bias=True, depthwise_initializer='glorot_uniform',
    pointwise_initializer='glorot_uniform',
    bias_initializer='zeros', depthwise_regularizer=None,
    pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None,
    **kwargs
)
Separable convolutions consist of first performing a depthwise spatial convolution (which acts on each input channel separately) followed by a pointwise convolution which mixes the resulting output channels. The depth_multiplier argument controls how many output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version of an Inception block.
| Arguments | |
|---|---|
| filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). | 
| kernel_size | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. | 
| strides | An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_ratevalue != 1. | 
| padding | one of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. | 
| data_format | A string, one of channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last". | 
| dilation_rate | An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_ratevalue != 1 is incompatible with specifying anystridesvalue != 1. | 
| depth_multiplier | The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to filters_in * depth_multiplier. | 
| activation | Activation function to use. If you don't specify anything, no activation is applied ( see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| depthwise_initializer | Initializer for the depthwise kernel matrix ( see keras.initializers). | 
| pointwise_initializer | Initializer for the pointwise kernel matrix ( see keras.initializers). | 
| bias_initializer | Initializer for the bias vector ( see keras.initializers). | 
| depthwise_regularizer | Regularizer function applied to the depthwise kernel matrix (see keras.regularizers). | 
| pointwise_regularizer | Regularizer function applied to the pointwise kernel matrix (see keras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector ( see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to the output of the layer (its "activation") ( see keras.regularizers). | 
| depthwise_constraint | Constraint function applied to the depthwise kernel matrix ( see keras.constraints). | 
| pointwise_constraint | Constraint function applied to the pointwise kernel matrix ( see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector ( see keras.constraints). | 
Input shape:
4D tensor with shape: (batch_size, channels, rows, cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, rows, cols, channels) if data_format='channels_last'.
Output shape:
4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. rows and cols values might have changed due to padding.
| Returns | |
|---|---|
| A tensor of rank 4 representing activation(separableconv2d(inputs, kernel) + bias). | 
| Raises | |
|---|---|
| ValueError | if paddingis "causal". | 
| ValueError | when both strides> 1 anddilation_rate> 1. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/SeparableConv2D