On this page
tf.keras.metrics.binary_accuracy
Calculates how often predictions matches binary labels.
tf.keras.metrics.binary_accuracy(
    y_true, y_pred, threshold=0.5
)
Standalone usage:
y_true = [[1], [1], [0], [0]]
y_pred = [[1], [1], [0], [0]]
m = tf.keras.metrics.binary_accuracy(y_true, y_pred)
assert m.shape == (4,)
m.numpy()
array([1., 1., 1., 1.], dtype=float32)
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN]. | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN]. | 
| threshold | (Optional) Float representing the threshold for deciding whether prediction values are 1 or 0. | 
| Returns | |
|---|---|
| Binary accuracy values. shape = [batch_size, d0, .. dN-1] | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/metrics/binary_accuracy