On this page
tf.keras.metrics.CategoricalCrossentropy
Computes the crossentropy metric between the labels and predictions.
Inherits From: Mean, Metric, Layer, Module
tf.keras.metrics.CategoricalCrossentropy(
    name='categorical_crossentropy', dtype=None, from_logits=False,
    label_smoothing=0
)
This is the crossentropy metric class to be used when there are multiple label classes (2 or more). Here we assume that labels are given as a one_hot representation. eg., When labels values are [2, 0, 1], y_true = [[0, 0, 1], [1, 0, 0], [0, 1, 0]].
| Args | |
|---|---|
| name | (Optional) string name of the metric instance. | 
| dtype | (Optional) data type of the metric result. | 
| from_logits | (Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution. | 
| label_smoothing | (Optional) Float in [0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g. label_smoothing=0.2means that we will use a value of0.1for label0and0.9for label1" | 
Standalone usage:
# EPSILON = 1e-7, y = y_true, y` = y_pred
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
# y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
# xent = -sum(y * log(y'), axis = -1)
#      = -((log 0.95), (log 0.1))
#      = [0.051, 2.302]
# Reduced xent = (0.051 + 2.302) / 2
m = tf.keras.metrics.CategoricalCrossentropy()
m.update_state([[0, 1, 0], [0, 0, 1]],
               [[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
m.result().numpy()
1.1769392
m.reset_states()
m.update_state([[0, 1, 0], [0, 0, 1]],
               [[0.05, 0.95, 0], [0.1, 0.8, 0.1]],
               sample_weight=tf.constant([0.3, 0.7]))
m.result().numpy()
1.6271976
Usage with compile() API:
model.compile(
  optimizer='sgd',
  loss='mse',
  metrics=[tf.keras.metrics.CategoricalCrossentropy()])
Methods
reset_states
  
  reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
  
  result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
  
  update_state(
    y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true and y_pred should have the same shape.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN]. | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN]. | 
| sample_weight | Optional sample_weightacts as a coefficient for the metric. If a scalar is provided, then the metric is simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the metric for each sample of the batch is rescaled by the corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted to this shape), then each metric element ofy_predis scaled by the corresponding value ofsample_weight. (Note ondN-1: all metric functions reduce by 1 dimension, usually the last axis (-1)). | 
| Returns | |
|---|---|
| Update op. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/metrics/CategoricalCrossentropy